Index

Accounting stance: defined, 55
ADAB, 167
Adams, R.M., 82
Agriculture: in ancient Hawaii, 140–141; in Java, 177–184; in Northern Thailand, 170–171; and social institutions, 81–89
Agroforestry: defined, 120; economic analysis of, 126; in Java, 183; in Northern Thailand, 170–171; and sustained site productivity, 122–123; use of in watershed management, 119–129
Ahmed, S., 124
Ahuapuaa, 135–143; defined, 135
Alienation: of watershed communities, 148–153
A Pua'aua, defined, 134
A Pua'aua, defined, 134
Aley cropping, 122
Ambuklao Reservoir, Philippines, 195
American Society of Civil Engineers, 196
Analytical framework for watershed management: application of, 25–30; major elements of, 17–25; role of, 30; three dimensions of, 17, 30
Analytical unit of account: and role of policy, 72–73
Annexation: in watershed communities, 148–152
Arago, J., 142
Armstrong, C.L., 35, 37
Baguio City, Philippines, 191–193
Bailey, F.G., 148
Bajracharya, D., 147
Banawat, S., 163
BAPPEDA, East Java, 187
Barrau, E.M., 183
Barron, R.J.W., 47
Barth, F., 85
Baseflow, defined, 45
Baseline data: need for, 88–89
Baumol, W.J., 64
Benefit-cost analysis (BCA): of alternative land-use plans, 25; described, 58–59; “traditional,” 72, 76
Benefits: distribution of, 207–208; in project analysis, 67–68
Bengawan Solo River Basin, 183
Bhutan, 151
Binga Reservoir, Philippines, 195
Biophysical aspects of watersheds, 4
Biophysical effects of land uses, 33–49
Biophysical information for watershed assessment: geology and terrain, 48; hydrologic behavior, 48–49; soils, 48
Bishop, R.C., 76
Blaikie, P., 4, 112, 208
Bosch, J.M., 41, 42
“Bottom-up” planning, 172
Bottral, A., 97, 109
Boughten, W.C., 38
Boundaries: natural versus sociopolitical, 86; as an obstacle to integrated
Boundaries (continued)
watershed management, 86; role of in
watershed management, 7–9; setting
of appropriate, 61–62; watershed and
political in Hawaii, 134–136, 138–139
Bower, B.T., 17, 64, 66, 69
Bowonder, B., 3
Brewbaker, J.L., 124
Briones, N.D., 191
Bromley, D.W., 93, 96
Brooks, K.N., 49, 61, 153, 155
Brown, L., 3
Buffer strips, 40–41
Bujra, A.S., 148
Bureau of Mines and Geosciences,
Philippines, 193
Burma, 87

Campbell, A., 141
Carroll, M., 19
Carrying capacity: defined, 14
Case studies: Hawaii, 133–143; Hindu-
Kush Himalayas, 145–156; Java,
177–188; Northern Thailand, 170–171;
outlined, 13–14
Cassava, 128
Cernea, M.M., 11, 166
Chambers, R., 109
Chanphaka, U., 163
Chao Phraya Watershed, Thailand, 163
Chapman, E.C., 161
China, 85
Chow, V.T. 196
Christanty, L., 123
Chunkao, K., 19
Ciriacy-Wantrup, S.V., 96
Citanduy River Basin, 183
Clark, W.C., 98
Class relations: as an obstacle to in-
tegrated watershed management, 87
Cloud forest, 43
Cohen, J.M., 166
Cohen, R., 148
Common property resource manage-
ment, 11–12
Community organization: and local par-
ticipation, 97–98, 210–211
Community participation, 98–99,
108–109
Conway, G.R., 182
Cruz, W., 10
Culler, R.C., 47
Dangler, E.W., 35, 37
Deforestation: in the Hindu-Kush
Himalayas, 147; in Northern
Thailand, 162
Degradation: prevention of in
watersheds, 123
Deforestation: described, 59
Carrow, E.W., 109
“Critical” lands: in Java, 182
Crouch, B.R., 167
Cruz, W., 10
Culler, R.C., 47
Dangler, E.W., 35, 37
Deformation in the Hindu-Kush
Himalayas, 147; in Northern
Thailand, 162
Degradation: prevention of in
watersheds, 123
Deforestation: defined, 96
de Vries, E., 180
Discount rate: choice of in economic
analysis, 64; and time horizon, 64
Discounting, 63–64; defined, 63
Distribution of water yield, 43–46
Distributional policies, 78–79
Dixon, J.A., 49, 61, 64, 66, 69, 77
Donino, I.L., 122
Donner, W., 162
Dorr, P., 94
Downstream management practices,
23–25
Drew, D., 82
Dunn, F.T., 85
Earle, T.K., 135, 136, 138
Easter, K.W., 60, 115, 153, 155
Eckholm, E.P., 3, 147
Ecology, in the Himalayan region, 146
Economic analysis: of agroforestry, 126;
defined, 55; role of in watershed
management, 212; types of, 58–61; of
a watershed project, 53–69
Economic logic: of the watershed as a
management unit, 53
Economic policies: effect on watersheds,
71, 211
Edelman, C.H., 180
El Swaify, S.A., 35, 37
Environmental degradation: in the
Hindu-Kush Himalayas, 148
Environmental issues: awareness of in
the Hindu-Kush Himalayas, 155–156
Erosion, 3, 35–38; causes of, 35–38; in
forests, 37–38; gully, 37; by land use,
35–38; in Northern Thailand, 162;
prevention of, 35–38, surface, 35
Erosion control: role of agroforestry in,
120–121
Ethnic minorities, 89; in Northern Thailand, 161–162
Ethnic relations: as an obstacle to integrated watershed management, 87
European Economic Community, 75
Evenson, R.E., 166
Ex-ante and ex-post analysis: described, 60–61
Extension: in Northern Thailand, 166–172; role of in watershed management, 159–173
Extension agents: and participation by communities, 211
Extension education, 107
External policies affecting watershed management, 211
Externalities: defined, 53
FAO, 183, 185
Financial analysis, 64; defined, 55
Fire protection: in watershed management, 38
Flooding: and forest cover, 46
Fog forest, 43
Ford Foundation, 186
Forest cover: and water quality, 42–43
Forestry: managed use of, 127–128; roles in watershed management, 119
Free-riders, 95
Galvez, J.A., 105
Geertz, C., 180, 184
Gilmour, D.A., 43
Gittinger, J.P., 64, 166
GOI, 183
Golden triangle, 161
Great Mahele: in ancient Hawaii, 142
Gregersen, H.M., 49, 61
Groundwater: contamination of, 41. See also Water table
Gurung, H., 147
Haderlie, V.K., 184
Hamilton, L.S., 40, 42, 43, 44, 46, 49, 61, 83, 127
Handy, E.G., 135, 136
Handy, E.S.C., 135, 136
Hanson, R.L., 47
Hatch, J.K., 166
Hawaii, 14, 41, 133–143; ancient society and land use, 134–143; description of, 133; land-use regulations, 133; water rights in, 136–138
Hewitt, L., 19
Hewlett, J.D., 41, 42, 45
Highland Agricultural and Social Development Project, 164–173
Hill people: in Northern Thailand, 161–162
Hindu-Kush Himalayas, 145–155; description of, 147; ecology of, 147
Hitzhusen, F., 61
Hoey, P.M., 171
Holmes, J.W., 47
Horticultural crops: in watersheds, 122
Howe, C.W., 77
Hufschmidt, M.M., 17, 64, 66, 69
Human ecology: defined, 81; systems model of, 82–83
Human social system: defined, 82; and natural ecosystem, 82–89; symbiotic relationships, 85
Huntings Technical Services, 154
Huxley, P., 120
Hydrologic behavior, 48–49
Hydrologic cycle, 7, 35
ICRAF, 120
Implementation, 103–117; effects of political structure on, 208; evaluation of, 109–112; failure of, 103–104; need for flexibility, 105; problems with in Java, 184–185
Implementation issues: political, 112–114; socioeconomic and technical, 115–116
Implementation tools, 19–21, 55–58, 68; examples of, 207; as "ways of doing things," 206; within a conceptual framework, 30
Import policies, 75
Incentives, 9; and institutions, 94–97; monetary, 106–107; role of in upper watershed areas, 155; types of, 73
Indonesia. See Java
Infiltration capacity, 46–47
Input subsidies, 74
Inputs: natural, and management, for watershed management, 21
Institutional arrangements, 30, 117; defined, 91; and incentives, 94–97; for program implementation, 111; and success of watershed projects, 108; for watershed management, 17, 19–21,
Index

Institutional arrangements (continued) 207-208; for watershed management on Java, 187
Institutions, 11-12, 91-101; for collective action, 108; defined, 91; in Northern Thailand, 162-164
Integrated Rural Environmental Program, Indonesia, 185
Integrated watershed management: as an approach to resource management, 6-12; implications for, 205-213; in Java 186-187. See also Watershed management
Interdisciplinary approach: role of, 208-209
Intertemporal policies, 75-76
Irrigation: in Java, 182; in Northern Thailand, 170-171
Ives, J.D., 147

Jacobson, T., 82
James, D.E., 64, 66, 69
Jamieson, N.L., 88
Java, 14, 177-188; agriculture in, 179-184; land use in, 179-182; physical setting of, 177; population in, 177, 182, 184
Jayaraman, T.K., 103, 110, 114, 115
Johnston, B.F., 98
Johnston, C.D., 47
Jones, P., 127
Joshe, P., 43

Kahuna: defined, 134
Kapu: defined, 134; end of system, 141; examples of, 136, 141
Karki, Y.B., 152
Kauai, 135, 138
Kelman, S., 108, 110, 111
Keoprapan, B., 162
KEPAS, 179, 181
Kijar, S., 163
King, P.N., 83
Kipple, F.P., 47
Konohiki: defined, 134
Koppel, B.M., 92
Korten, D.C., 98
Korten, F.F., 98, 99
Krishnamra, J., 163
Kruger, F.J., 43
Kunstadter, P., 161
Lamosangu-Jiri Road Project, Nepal, 153
Lamrock, J.C., 167
Land capability and sustainability analysis, 25
Land tenure: defined, 94; effect on watershed management, 94; in Northern Thailand, 162-163; problems with in agroforestry, 127
Land use: in Lower Agno River watershed, 193-194; in watersheds, 34
Land use, upland: in Java, 179-182
Land-use options for watershed management, 119-120
Land-use patterns: cultural basis of, 89
Land-use regulations: in Hawaii, 133-134
Legal arrangements: as implementation tools, 106
Legume trees, 124-125
Lembaga Ekologi, Indonesia, 37
Leucaena: use in agroforestry systems, 125
Leys, C., 150
Lipton, M., 108
Lo, A., 35
Local participation in watershed management, 11; importance of, 210-211; in Java, 185-186; in planning, 166-170
Loi, 137
Lower Agno River watershed, 191-204; description of, 191-194; disturbances in, 193-194; land uses of, 193-194
Luna war: defined, 136

MacDicken, K., 124
MacGregor, R., 61
Macroeconomic policies: effects of on watershed management, 71, 78-79
Madura, 182
Mae Chaem, 8
Mae Chaem Watershed Development Project, 19
Makua inana: defined, 134
Management system: within a conceptual framework, 30
"Marginal" agricultural areas: on Java, 182
Markets: access to, 128
Mass wasting, 35
Mathur, H.N., 43
Index 219

Mauch, S.P., 147
Mazmanian, D.A., 112, 113
McKean, M.A., 11
McKeechar, A.J., 45
Megahan, W.F., 43
Meister, A.T., 64, 66, 69
Mendoza, R.C., 126
Mennen KL.H, 186
Menzies, A., 140
Messerli, B., 87, 147
Messerschmidt, D., 152
Mickewait, D.R., 166
Middleton, J., 148
Migration: in Java's uplands, 181
Mine tailings, 193–194; disposal of, 202, 204
Mining operations: pollution caused by, 191, 193–194, 202–204
Mitchell, C., 49
Moodie, A.D., 147
Mokul defined, 135
Monetary incentives: use of, 106–107
Morss, E.R., 166
Mosley, M.P., 37
Muljadi, D., 182
Multiple objective decision making, 54
Myrick, R.M., 47

Nair, P.K., 121, 125, 126
Nakuna, E., 137
Nam Pong Reservoir, Thailand, 66
Nation-states: and incorporation of minority groups, 148
National Power Corporation, Philippines, 194, 195, 199–201
Nationalization: effects of in the Hindu-Kush Himalayas, 152
Nationalization Act of 1957, Nepal, 152
Natural ecosystem: defined, 82; and human social system, 82–89
Natural resources: as objectives or constraints, 77
Natural resources degradation: causes of, 93
Natural system-social system interactions, 82
Nelson, G.C., 10
Nelson, M., 61
Nepal, 14, 96
N-fixing trees: in agroforestry systems, 124
Nicholson, N.K., 62

Nitrogen, 124
Nizamsagar Reservoir, India, 3
Nobe, K., 93
Nordhoff, C., 142
Norgaard, R.B., 82

Obstacles to integrated watershed management: social and behavioral, 86–88
Off-site effects, 21–23, 67–68
O’Loughlin, C.L., 38, 120
Olson, M., 108
On-site effects, 21, 67–68
On-site resource utilization and management practices, 23
Opportunity cost: of capital, 64; in watershed management, 73
Organizational arrangements, 117; defined, 91; in Java, 186–187; for watershed management, 207–208
Organizational problems for watershed management, 21
Organizations: for collective action, 95; defined, 93; for watershed management, 97–98
Organizations, government: in Northern Thailand, 163–164

Pacuko, E., 125
Pakistan, 153–154
Palanisami, K., 60
Panday, K., 155
Papua New Guinea, 94
Participatory approaches, 98–99; obstacles to, 99
Puyuan, 126
PCARRD, 126
Pearce, A.J., 41, 45
Peck, A.J., 47
Pei, Sheng-ji, 85
Perrens, S.J., 49
Philippines: 14, 122, 128; case study of soil erosion in, 191–204
Pickering, K., 185
Planner-planee relationship, 92; as an obstacle to integrated watershed management, 87–88
Political factors in watershed management, 211–212
Political problems in watershed management, 10
Popkin, S.L., 95, 108
Population: in Java, 177, 182
Population growth: effect of on watersheds, 3; in Java, 184
Portlock, N., 140
Price supports, 74-75
Primary regions: defined, 92
Privatization: role of in watershed management, 11
Probability: use of in economic analysis, 67
Problem census technique, 167-170
Process of watershed management, 18-19
Productive and protective uses of watersheds, 33
Program implementation: forestry example, 111-112; key points for, 116-117. See also Implementation
Property rights, 11
Property value approach, 66
Sabatier, P.A., 112, 113
Sajise, P.E., 92
Salinization, 47
Sandalwood, 142
San Roque Multipurpose Project (SRMPP) in the Philippines, 191-204; description of, 194
Schultz, T.W., 72
Schweithelm, J., 43
Seckler, D., 93
Secondary regions: defined, 92
Sedimentation: defined, 38; effects of, 40; estimation of losses due to, 196-198; estimation of in the Philippines, 195-196; extent of, 3; minimization of, 40-41
Sedimentation rates: calculation of, 198-199
Semargern, Y., 163
Sensitivity analysis: in economic analysis, 67; example of use of, 201
Serrano, R.C., 116
Sfeir-Younis, A., 61, 73
Sharma, M.L., 47
Sheng, T.C., 162
Shifting cultivation: in Northern Thailand, 162
Sind project: effects of, 154
Singh, B., 43
Slope stability: role of trees in, 120-121
Small, L.E., 109
Smith, D.D., 35
Social considerations in the watershed management plan, 88-89
“Social economic” test, 9
“Social” factors in watershed management, 81
Social forestry project: in Java, 186
Social rate of return, 9
Social rate of time preference, 64
Social systems and natural systems: parallels between, 83-86
Socioeconomic issues, 9-12, 205
Soil erosion. See Erosion
Southgate, D., 61
“Sponge effect,” 43
Storm events: and flooding, 45-46
Stormflow: average, 43; defined, 45
Stream response: to a single rainfall event, 45
Subsidies, 9, 155; use of in program implementation, 107
<table>
<thead>
<tr>
<th>Index</th>
<th>221</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surrogate market approaches, 66</td>
<td>USAID, 183</td>
</tr>
<tr>
<td>Survey-based valuation techniques, 66</td>
<td>User participation, 11</td>
</tr>
<tr>
<td>Sutadipradja, E., 113, 114, 183</td>
<td>Valuation: of marketed and nonmarketed effects, 64–66; of sediment damage, 196–198; of watershed plan inputs and outputs, 64–67</td>
</tr>
<tr>
<td>Sweet, C.F., 166</td>
<td>Vancouver, G., 137</td>
</tr>
<tr>
<td>Swidden cultivation: in Northern Thailand, 171</td>
<td>Van Den Beldt, R., 124</td>
</tr>
<tr>
<td>Symbiotic relationships, 85</td>
<td>Van Lill, W.S., 43</td>
</tr>
<tr>
<td>Taungya method of reforestation, Java, 183</td>
<td>Van Wyk, D.B., 43</td>
</tr>
<tr>
<td>Technical assistance: in watershed management, 107</td>
<td></td>
</tr>
<tr>
<td>Tenure rights of upland farm families, Java, 181</td>
<td>Wai, 137–138</td>
</tr>
<tr>
<td>Tergast, G.C.W. Chr., 180</td>
<td>Wallace, M., 96</td>
</tr>
<tr>
<td>Terraces: and erosion control, 121–122</td>
<td>Water: importance of in Hawaiian language, 137–138</td>
</tr>
<tr>
<td>Terracing programs: in Java, 183–185</td>
<td>Water pollution: by chemicals, 41</td>
</tr>
<tr>
<td>Thailand, 75, 87, 106, 128; case study in, 170–173</td>
<td>Watershed approach: and rural development projects, 6</td>
</tr>
<tr>
<td>Thailand, Northern, 159–173; description of, 159–161; social setting in, 161–162</td>
<td>Watershed communities: and agroforestry, 125–126; and balance within resource base, 154; defined, 145; in the Hindu-Kush Himalayas, 145–156; isolation of, 145; relation between lowlanders and, 146</td>
</tr>
<tr>
<td>Thayer, W.W., 137</td>
<td>Watershed integration: as an ecological, biophysical, and social process, 156</td>
</tr>
<tr>
<td>Thomson, J.T., 94, 95</td>
<td>Watershed management: activities and tasks, 23–25; in ancient Hawaii, 138–140; conceptual framework for, 17–30; effect of economic policies on, 9–10; in Hawaii, 14; in the Hindu-Kush Himalayas, 145–156; in Java, 177–188; local participation in, 11; organization for, 97–98; in the Philippines, 191–204; as a planned system, 19–23; political problems in, 10–11; process of, 18–19; socioeconomic issues in, 9–12; in Thailand, 159–173</td>
</tr>
<tr>
<td>Time horizon: setting of, 62–63</td>
<td>Watershed management plan: example of estimation of costs of for analysis, 201</td>
</tr>
<tr>
<td>Time preference of consumption: defined, 63</td>
<td>Watershed management research: agenda for, 208–210</td>
</tr>
<tr>
<td>Timing of water yield, 43–46</td>
<td>Watersheds: defined 4; as secondary regions, 91–93; as the unit of account, 73, 78</td>
</tr>
<tr>
<td>Tolley, G.S., 61</td>
<td>Water table: changes in, 46–48; effects of tree cover on, 46–48; recharge of, 46</td>
</tr>
<tr>
<td>Tongyai, P., 163</td>
<td></td>
</tr>
<tr>
<td>"Top-down" approaches, 11</td>
<td></td>
</tr>
<tr>
<td>Transactions cost, 12, 68</td>
<td></td>
</tr>
<tr>
<td>Transmigration: in Indonesia, 184</td>
<td></td>
</tr>
<tr>
<td>Travel-cost approach, 66</td>
<td></td>
</tr>
<tr>
<td>Trustrum, N.A., 49</td>
<td></td>
</tr>
<tr>
<td>Turner, R.M., 47</td>
<td></td>
</tr>
<tr>
<td>Uhlig, H., 161</td>
<td></td>
</tr>
<tr>
<td>Uncertainty, 67; institutional, 96–97</td>
<td></td>
</tr>
<tr>
<td>Underdevelopment: in upland watershed communities, 150, 153–154</td>
<td></td>
</tr>
<tr>
<td>Unit of account: in policy analysis, 72</td>
<td></td>
</tr>
<tr>
<td>United States, 75</td>
<td></td>
</tr>
<tr>
<td>Universal Soil Loss Equation, 35–37</td>
<td></td>
</tr>
<tr>
<td>Uphoff, N., 98, 166</td>
<td></td>
</tr>
<tr>
<td>Upland farmers: attitudes of, 128–129</td>
<td></td>
</tr>
<tr>
<td>Upland watersheds: role of agroforestry in, 126–129; and watershed community, 145</td>
<td></td>
</tr>
<tr>
<td>Upper Solo River Basin, Indonesia, 92</td>
<td></td>
</tr>
<tr>
<td>Upper watershed: and class differences, 87</td>
<td></td>
</tr>
</tbody>
</table>
Water yield of streams: determinants of, 42; effects of forest cover on, 42; timing or distribution of, 43–46
Wells, G.J., 172
Wichaedit, W., 162
Wicht, C.C., 47
Wiersum, K.F., 90, 121
Wischmeier, W.H., 35
With project analysis: example of in the Philippines, 198–201
With-and-without analysis: defined, 59–60; example of in the Philippines, 195–203
Without project analysis: example of in the Philippines, 195–198
Wongsprasert, S., 161
World Bank, 152
Wronski, E.B., 47
Yost, R.S., 35
Zadroga, F., 43
Ziemer, R.R., 38, 104, 115, 120